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Dose-Response Model for 13 Strains of Salmonella

Thomas Oscar∗

Data from a human feeding trial with healthy men were used to develop a dose-response model
for 13 strains of Salmonella and to determine the effects of strain variation on the shape of
the dose-response curve. Dose-response data for individual strains were fit to a three-phase
linear model to determine minimum, median, and maximum illness doses, which were used
to define Pert distributions in a computer simulation model. Pert distributions for illness dose
of individual strains were combined in an Excel spreadsheet using a discrete distribution to
model strain prevalence. In addition, a discrete distribution was used to model dose groups
and thus create a model that simulated human feeding trials. During simulation of the model
with @Risk, an illness dose and a dose consumed were randomly assigned to each consumption
event in the simulated feeding trial and if the illness dose was greater than the dose consumed
then the model predicted no illness, otherwise the model predicted that an illness would occur.
To verify the dose-response model predictions, the original feeding trial was simulated. The
dose-response model predicted a median of 69 (range of 43–101) illnesses compared to 74 in
the original trial. Thus, its predictions were in agreement with the data used to develop it.
However, predictions of the model are only valid for eggnog, healthy men, and the strains and
doses of Salmonella used to develop it. When multiple strains of Salmonella were simulated
together, the predicted dose-response curves were irregular in shape. Thus, the sigmoid shape
of dose-response curves in feeding trials with one strain of Salmonella may not accurately
reflect dose response in naturally contaminated food where multiple strains may be present.
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1. INTRODUCTION

Salmonella are gram-negative, rod-shaped bacte-
ria that inhabit the intestinal tracts of humans and
animals and are classified as either typhoid or non-
typhoid.(1) Typhoid strains, such as S. Typhi and S.
Paratyphi, cause typhoid fever, which is transmitted
from person to person, whereas nontyphoid strains,
such as S. Typhimurium and S. Enteritidis, cause gas-
troenteritis and are usually acquired from animal
food products.(2) Some nontyphoid strains, such as
S. Pullorum and S. Gallinarum in poultry, are highly
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pathogenic in the animal host but weakly pathogenic
in humans.(3) On the other hand, most nontyphoid
strains are nonpathogenic in the animal host but
highly pathogenic in humans.(2) Consequently, they
are difficult to detect in slaughter animals and thus ac-
count for most of the cases of human salmonellosis.(3)

In developing countries, typhoid fever is de-
clining, whereas nontyphoid salmonellosis is in-
creasing.(4) These epidemiological changes are at-
tributed to prophylactic treatment of typhoid fever
and changes in animal production and processing
practices that facilitate the spread of nontyphoid
Salmonella among food animals.(4) The U.S. Centers
for Disease Control and Prevention estimate that
nontyphoid Salmonella of food origin causes 1.3 mil-
lion illnesses and 553 deaths per year.(5)
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The number of nontyphoid Salmonella that must
be ingested to cause gastroenteritis ranges from less
than 100 to greater than 109.(6) This large variation
in illness dose most likely reflects differences in vir-
ulence among strains of Salmonella, differences in
resistance among humans, and the interacting effect of
the food matrix on pathogen virulence and host resis-
tance.(6) Thus, predicting responses of consumers to
ingestion of food contaminated with Salmonella re-
quires knowledge of how the food matrix, pathogen
virulence, and host resistance interact to determine
the dose of pathogen ingested that causes illness.

The human feeding trial is a useful black box
method for establishing a mathematical relationship
between the dose of pathogen ingested and the
response of the host population. In a typical feeding
trial, groups of human volunteers are fed known
doses of a pathogen (i.e., dose groups) in a common
food vehicle, such as milk(7) or eggnog,(8) and then
the subjects are monitored for signs of a response,
such as fecal shedding, antibody production, fever,
abdominal cramping, vomiting, headache, and di-
arrhea. Responses of individual subjects in such
trials fall within a continuum from no response
to severe illness. Nonetheless, to model the data,
criteria are established to classify responses as
either positive or negative for infection or illness.
Using the latter approach, dose-response models
have been developed for a number of pathogens,
such as Campylobacter jejuni,(9) Cryptosporidium
parvum,(10) Escherichia coli O157:H7,(11) Giardia
lambia,(12) Salmonella spp.,(13) Shigella spp.,(14) and
viruses.(15) The two most popular dose-response
models for microbial pathogens are the exponential
model and the beta-Poisson model,(15,16) although a
number of others, such as the Gompertz, log-logistic,
and Weibull gamma have also been used.(13,17)

The aforementioned dose-response models are
analogous to primary models, such as the Gom-
pertz(18) and Baranyi(19) models for microbial growth,
in that they model a response as a function of one
variable while other variables are held constant. For
example, growth of a pathogen population in labora-
tory media is modeled as a function of time at a given
temperature, pH, and water activity. In an analogous
manner, in dose-response modeling, the response (i.e.,
infection or illness) of a host population is modeled as
a function of dose for a given food matrix, pathogen
strain, and host population, usually healthy adults.

The instances in which dose-response modeling
and growth modeling differ are that in growth
modeling data are collected for a matrix of growth

conditions and then secondary(18) and tertiary(20)

models that predict the primary response (i.e.,
growth) as a function of time and the growth con-
dition variables (i.e., temperature, pH, and water
activity) are generated. In an analogous manner,
it should be possible to collect data for a matrix of
dose-response conditions and then construct sec-
ondary and tertiary models that predict the primary
response (i.e., infection or illness) as a function of
dose ingested and the dose-response variables (e.g.,
food pH, food fat%, pathogen strain, pathogen
prevalence, host age, and host health status).

A difficulty in applying a growth modeling ap-
proach to dose-response modeling is that most data
sets from human feeding trials are limited in scope be-
cause they include one or a limited number of dose-
response conditions. One exception is a large feed-
ing trial in which 13 strains of Salmonella were fed
to healthy men.(8,21,22) Using the illness data from this
feeding trial,(8,21,22) the objectives of the current study
were to develop a dose-response model for predict-
ing salmonellosis as a function of dose consumed and
strain variation and to use the model to investigate
the effect of strain variation on the shape of the dose-
response curve.

2. METHODS

2.1. Human Feeding Trial Data

Illness data from a feeding trial that was con-
ducted over 50 years ago with healthy men confined in
an institutional setting (8,21,22) were used for model de-
velopment (Fig. 1). Subjects in the trial were fed one
strain of nontyphoid Salmonella in a glass of eggnog
after the noon meal. Typically there were six (range
of five to eight) men per dose group (i.e., a group of
subjects that were fed the same dose and strain of
Salmonella). Strains were isolated from spray-dried
whole egg and included Anatum (three strains),
Bareilly (one strain), Derby (one strain), Meleagridis
(three strains), Newport (one strain), and Pullorum
(four strains). Severity of illness ranged from mild to
severe (i.e., hospitalization) but was not considered in
this study.

2.2. Dose-Response Modeling

Incidence of salmonellosis (Y; %) in the test
population for individual strains of Salmonella was
graphed as a function of dose consumed (X; log10)
and then the data were fit (version 3.0, Prism, Graph-
Pad Software, Inc., San Diego, CA) to a three-phase
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A B C D E

Serotype Dose (log10) Ill Feedings Incidence
Anatum I 4.08 0 5 0%
Anatum I 4.38 0 6 0%
Anatum I 4.82 0 6 0%
Anatum I 4.97 0 6 0%
Anatum I 5.15 0 6 0%
Anatum I 5.41 0 6 0%
Anatum I 5.77 2 6 33%
Anatum I 5.93 3 6 50%

Anatum II 4.95 0 6 0%
Anatum II 5.65 0 6 0%
Anatum II 6.02 0 6 0%
Anatum II 6.59 0 6 0%
Anatum II 7.00 0 6 0%
Anatum II 7.38 0 6 0%
Anatum II 7.65 1 6 17%
Anatum II 7.83 4 8 50%

Anatum III 5.20 0 6 0%
Anatum III 6.10 2 6 33%
Anatum III 6.67 4 6 67%

Bareilly 5.10 1 6 0.17
Bareilly 5.84 2 6 0.33
Bareilly 6.23 4 6 0.67

Derby 5.14 0 6 0.00
Derby 5.85 0 6 0.00
Derby 6.22 0 6 0.00
Derby 6.81 0 6 0.00
Derby 7.18 3 6 0.50

Meleagridis I 4.08 0 6 0.00
Meleagridis I 4.38 0 6 0.00
Meleagridis I 4.72 0 6 0.00
Meleagridis I 4.98 0 6 0.00
Meleagridis I 5.19 0 6 0.00
Meleagridis I 5.48 0 6 0.00
Meleagridis I 5.86 0 5 0.00
Meleagridis I 6.06 0 6 0.00
Meleagridis I 6.74 0 6 0.00
Meleagridis I 7.38 1 5 0.20
Meleagridis I 7.70 4 6 0.67

Meleagridis II 6.00 0 6 0.00
Meleagridis II 6.74 0 6 0.00
Meleagridis II 7.00 1 6 0.17
Meleagridis II 7.30 2 6 0.33
Meleagridis II 7.61 5 6 0.83

Meleagridis III 5.20 0 6 0.00
Meleagridis III 6.18 0 6 0.00
Meleagridis III 6.89 1 6 0.17
Meleagridis III 7.00 2 6 0.33

Newport 5.18 1 6 0.17
Newport 5.59 1 8 0.13
Newport 6.13 3 6 0.50

Pullorum I 4.00 0 6 0.00
Pullorum I 9.25 0 6 0.00
Pullorum I 10.00 6 6 1.00
Pullorum I 10.20 6 6 1.00

Pullorum II 6.14 0 6 0.00
Pullorum II 8.21 0 6 0.00
Pullorum II 9.83 4 5 0.80

Pullorum III 6.36 0 6 0.00
Pullorum III 7.97 0 6 0.00
Pullorum III 9.11 0 6 0.00
Pullorum III 9.88 6 6 1.00

Pullorum IV 6.27 0 6 0.00
Pullorum IV 8.04 0 6 0.00
Pullorum IV 8.14 0 6 0.00

.

linear model:(23)

Y = 0 if X ≤ Xmin

Y = α(X − Xmin) if Xmin < X < Xmax

Y = 100 if X ≥ Xmax

where Xmin was the minimum illness dose (log10),
Xmax was the maximum illness dose (log10), and α was
the slope of the linear portion of the dose-response
curve. Median illness dose was calculated from the
dose-response curve.

The three-phase linear model is capable of pre-
dicting a minimum illness dose of one pathogen; how-
ever, data at low doses would be required. Thus,
the author does not reject current thinking that one
pathogen can cause illness. In the current study, the
lowest minimum illness dose obtained was 4.78 log10

for S. Bareilly. As discussed later, the use of healthy
men in the feeding trial or the feeding of only high
doses may explain the high minimum illness doses
observed when modeling the data. Had high-risk in-
dividuals and lower doses been included in the feeding
trial, the dose-response curves for individual strains
of Salmonella in the present study may have produced
curve-fits with a minimum illness dose of one.

The minimum, median, and maximum illness
doses from the three-phase linear model fits were used
to define Pert distributions for illness dose of indi-
vidual strains. This was done so that a dose-response
model could be created that simulated human feed-
ing trials and predicted dose response as a function of
dose consumed and strain variation, where strain vari-
ation refers to variation in strain virulence and preva-
lence. The model (Fig. 2) was created in an Excel 2000
spreadsheet (Microsoft Corporation, Redmond, WA)
and was simulated using @Risk (version 4.0, @Risk,
Palisade Corporation, Newfield, NY). Discrete distri-
butions were used to model the dose groups and strain
prevalence. During simulation, an illness dose (ID;
log10) from the discrete distribution for strain preva-
lence and a dose consumed (X; log10) from the dis-
crete distribution for dose consumed were randomly

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 1. Data set used to develop the dose-response model in Fig. 2.
Results from the original feeding trial were recorded in an Excel
spreadsheet by strain and dose group, where each row of results
in the spreadsheet represents a dose group. Entrance of the results
in a spreadsheet facilitated their use in the dose-response model.
As explained further in the legend to Fig. 2, the original feeding
trial was simulated to verify the dose-response model predictions
by using the cell addresses in this spreadsheet to define discrete
distributions for the frequencies of dose groups for the individual
strains in the dose-response model.
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Strain Frequency
Illness Dose 

(log10)
Formula

Anatum I 100 5.93  =RiskPert(5.45,5.93,6.41)

Anatum II 0 7.83  =RiskPert(7.56,7.83,8.1)

Anatum III 0 6.39  =RiskPert(5.53,6.39,7.24)

Bareilly 0 5.99  =RiskPert(4.78,5.99,7.2)

Derby 0 7.18  =RiskPert(6.88,7.18,7.49)

Meleagridis I 0 7.59  =RiskPert(7.24,7.59,7.93)

Meleagridis II 0 7.35  =RiskPert(6.9,7.35,7.81)

Meleagridis III 0 7.11  =RiskPert(6.78,7.11,7.44)

Newport 0 6.27  =RiskPert(4.92,6.27,7.63)

Pullorum I 0 9.67  =RiskPert(9.33,9.67,10)

Pullorum II 0 9.43  =RiskPert(8.75,9.43,10.1)

Pullorum III 0 9.46  =RiskPert(9.11,9.46,9.8)

Pullorum IV 0 9.32  =RiskPert(8.07,9.32,10.57)

Dose Consumed 8.14  =RiskDiscrete(Data!B2:B9,Data!D2:D9)

Illness Dose 5.93  =RiskDiscrete(C2:C14,B2:B14)

Illness (0=no, 1=yes) 1  =RiskOutput() + IF(B16<B17,0,1)

Fig. 2. A simulation dose-response model for predicting the inci-
dence of salmonellosis as a function of dose consumed and strain
variation. The model was constructed in an Excel spreadsheet
and was simulated using @Risk. The log10 minimum, median, and
maximum illness doses from the three-phase linear model fits of
the dose-response data for the individual strains of Salmonella
(Table I) were used to define Pert distributions for illness dose of
the individual strains (see Fig. 7 for an example). The frequencies
of occurrence of the individual strains in the simulation scenario
were entered in cells B2 to B14 of the model. A discrete distri-
bution was used to model illness dose of individual consumption
events in cell B17 of the model. Similarly, a discrete distribution was
used to model the frequencies of occurrence of the dose groups for
individual strains, whereas the iterations for the simulation of the
scenario were used to model the number of subjects in the feeding
trial. During simulation of the model, @Risk randomly selected an
illness dose from the Pert distributions for the individual strains.
The randomly selected illness doses for an iteration of the model
are shown in cells C2 to C14 of the model. In addition, @Risk ran-
domly selected a dose from the discrete distribution for the dose
groups. The dose for an iteration of the model is shown in cell B16
of the model. To determine which of the 13 illness doses was used
to calculate the response for the iteration, @Risk used the discrete
distribution for illness dose in cell B17 to randomly select one of the
13 possible illness doses for the iteration. The selection of the ill-
ness dose was based on the frequencies of occurrence of the strains
in the dose groups of the feeding trial. Finally, the dose response
was calculated. If the dose consumed (cell B16) was less than the
illness dose (cell B17) the model returned a zero indicating that an
illness did not occur, otherwise the model returned a one indicating
that an illness occurred. The sample scenario shown here was for
simulating the original feeding trial for Salmonella Anatum I and
therefore the frequency of occurrence of S. Anatum I was set to
100 and the frequencies of occurrence of all other Salmonella were
set to zero. Note that the input settings for the discrete distribu-
tion for the dose groups are the cell addresses that corresponded
to the location of the S. Anatum I data in the Data! spreadsheet
shown in Fig. 1. The model scenario was simulated for 47 iterations,
which was the number of feedings in the original trial. The output of
the model was a discrete distribution for the 47 consumption events
where there were two possible outcomes: no illness (i.e., output = 0)
or illness (i.e., output = 1).

assigned to each consumption event in the simulated
human feeding trial and individual dose response was
calculated:

Illness (0 = no, 1 = yes) = IF(X < ID, 0, 1)

where no illness occurred (i.e., output = 0) when the
dose was less than the illness dose, otherwise an illness
occurred (i.e., output = 1). Note that the discrete dis-
tribution for dose consumed in Fig. 2 is linked to the
database in Fig. 1 with cell addresses that correspond
to the dose groups of S. Anatum I.

2.3. Dose-Response Model Verification

To verify the dose-response model predictions,
the original feeding trials for individual strains were
simulated using @Risk settings of 100 simulations (i.e.,
100 replicates of the feeding trial), random selection
of different random number generator seeds, where
each seed generated a unique outcome of the model,
and Latin Hypercube sampling (results were similar
using Monte Carlo sampling). The number of itera-
tions per simulation was equal to the number of feed-
ings in the original trial. Illnesses per trial were calcu-
lated (output mean x iterations) and range and central
tendency (median) of illnesses among the 100 trials
were compared to observed illnesses in the original
trial.

2.4. Effect of Strain Variation

Four “what if” feeding trials were simulated to
investigate effects of strain variation (i.e., strain vir-
ulence and strain prevalence) on the shape of the
dose-response curve. Dose groups from 104 to 1010

in increments of 100.1 Salmonella per glass of eggnog
and 10,000 subjects per dose group were simulated
for each trial. Simulation settings of 10,000 iterations
(i.e., number of subjects per dose group), one simula-
tion per trial, a seed of one (arbitrary selection), and
Latin Hypercube sampling were used. Dose-response
curves of the incidence of salmonellosis versus dose
consumed were generated and visually compared.

3. RESULTS

3.1. Dose-Response Modeling

None of the data for individual strains com-
pletely defined the dose-response curve. Some strains
(Bareilly and Newport in Fig. 4) lacked data at low
and high dose responses, some strains (Anatum I, II,
and III in Fig. 3, Derby in Fig. 4, Meleagridis I, II, and
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Fig. 3. Three-phase linear model fits for the three strains of
Salmonella Anatum. Despite incomplete data at high dose re-
sponses, the model fit converged in all cases.
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Fig. 4. Three-phase linear model fits for Salmonella Bareilly,
Derby, and Newport. Despite incomplete data at low and high dose
responses, the model fit converged in all cases.
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Fig. 5. Three-phase linear model fits for the three strains of
Salmonella Meleagridis. Despite incomplete data at high dose re-
sponses, the model fit converged in all cases.
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Fig. 6. Three-phase linear model fits for the four strains of
Salmonella Pullorum. Despite missing data at low, intermediate,
and high dose responses, the model fit converged in all cases.

III in Fig. 5, and Pullorum II and IV in Fig. 6) lacked
data at high dose responses and some strains (Pullo-
rum I and III in Fig. 6) lacked data at intermediate
dose responses. The three-phase linear model was se-
lected because it was capable of fitting dose-response
curves with missing data by extrapolating beyond the
data. The advantages and disadvantages of such ex-
trapolation are addressed later. In fact, the model fit
converged in all cases with R2 that ranged from 0.73
to 1.00 (Table I). Variation in minimum, median, and
maximum illness doses was observed among strains
and thus justified the need for a dose-response model
that considered differences in strain virulence.

Table I. Parameters and Goodness-of-Fit of the Three-Phase
Linear Model to the Dose-Response Data for the Individual

Strains of Salmonella

Strains Xmin Xmed Xmax df R2

Anatum I 5.45 5.93 6.41 6 1.000
Anatum II 7.56 7.83 8.10 6 1.000
Anatum III 5.53 6.39 7.24 1 1.000
Bareilly 4.78 5.99 7.20 1 0.870
Derby 6.88 7.18 7.49 3 1.000
Newport 7.24 7.59 7.93 1 0.729
Meleagridis I 6.90 7.35 7.81 9 1.000
Meleagridis II 6.78 7.11 7.44 3 0.964
Meleagridis III 4.92 6.27 7.63 2 1.000
Pullorum I 9.33 9.67 10.00 2 1.000
Pullorum II 8.75 9.43 10.10 1 1.000
Pullorum III 9.11 9.46 9.80 2 1.000
Pullorum IV 8.07 9.32 10.57 3 0.967

Abbreviations: Xmin = log10 minimum illness dose; Xmed = log10
median illness dose; Xmax = log10 maximum illness dose; df =
degrees of freedom; and R2 = coefficient of determination.
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Fig. 7. An example of a Pert distribution for illness dose of
Salmonella (i.e., Anatum I) that was obtained by using the log10
minimum, median, and maximum illness doses from the three-
phase linear model fit (Fig. 3 and Table I) of the dose-response
data.

3.2. Dose-Response Model Verification

Dose-response curves for individual strains were
converted into Pert distributions for illness dose us-
ing minimum, median, and maximum values from the
three-phase linear model fits. A representative exam-
ple of a Pert distribution for illness dose is shown in
Fig. 7. Pert distributions for illness dose were then
combined in a computer spreadsheet to form a simu-
lation model for predicting the incidence of salmonel-
losis as a function of dose consumed and strain preva-
lence (Fig. 2). To verify this approach to dose-response
modeling, the original feeding trial was simulated and
the results obtained are shown in Table II. In all cases

Table II. Illnesses Observed in the Original Feeding Trial and Predicted by the Dose-Response Model
for Salmonella

Predicted Illnesses
Feedings Observed

Strains per Trial Trials Illnesses Minimum Median Maximum

Anatum I 47 100 5 1 4 9
Anatum II 50 100 5 1 4 7
Anatum III 18 100 6 3 6 8
Bareilly 18 100 7 4 6 9
Derby 30 100 3 0 3 5
Meleagridis I 64 100 5 2 5 8
Meleagridis II 30 100 8 6 8 12
Meleagridis III 24 100 3 0 1 4
Newport 20 100 5 1 3 6
Pullorum I 24 100 12 12 12 12
Pullorum II 17 100 4 4 5 5
Pullorum III 24 100 6 6 6 6
Pullorum IV 30 100 5 3 6 10

Total 74 43 69 101

Table III. “What If” Scenarios for Determining the Effect of
Strain Variation on the Shape of the Dose-Response Curve for

Salmonellosis

Scenarios

Strains A B C D

Anatum I 100a 25 0 10
Anatum II 0 75 0 10
Anatum III 0 0 10 0
Bareilly 0 0 0 0
Derby 0 0 20 10
Newport 0 0 0 10
Meleagridis I 0 0 0 0
Meleagridis II 0 0 30 0
Meleagridis III 0 0 0 10
Pullorum I 0 0 0 10
Pullorum II 0 0 40 0
Pullorum III 0 0 0 10
Pullorum IV 0 0 0 10

aFrequency.

the number of observed illnesses was within the range
of illnesses predicted by the model and overall, the
model predicted a median of 69 (range of 43 to 101)
illnesses compared to 74 illnesses in the original trial.
Thus, the dose-response model predictions were in
agreement with the data used to develop it.

3.3. Effects of Strain Variation on Dose Response

Four “what if” scenarios with different combi-
nations of the 13 strains (Table III) were simulated
to determine effects of strain variation on the shape of
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Fig. 8. Dose-response curve for salmonellosis that was obtained
by simulating scenario A in Table III, which was for one strain of
Salmonella.

the dose-response curve. When one strain (Anatum
I) was simulated, the dose-response curve had three
phases (Fig. 8). When two strains of different viru-
lence (Anatum I and II) were simulated, a five-phase
dose-response curve was obtained with a bottom, mid-
dle, and top asymptote (Fig. 9). The middle asymptote
occurred in the region where the dose consumed was
greater than the maximum illness dose of the more vir-
ulent strain (Anatum I) and less than the minimum
illness dose of the less virulent strain (Anatum II).
When four (Fig. 10) or eight (Fig. 11) strains were
simulated, the shape of the dose-response curve be-
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4 5 6 7 8 9 10
0

20

40

60

80

100

Dose (log10)

Sa
lm

on
el

lo
si

s 
(%

)

Fig. 9. Dose-response curve for salmonellosis that was obtained
by simulating scenario B in Table III, which was for two strains of
Salmonella with different virulence.
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Fig. 10. Dose-response curve for salmonellosis that was obtained
by simulating scenario C in Table III, which was for four strains of
Salmonella with different virulence.

came less sigmoid and more complex. These results
demonstrated that the predicted dose-response curve
does not have a sigmoid shape when multiple strains
with different virulence are present.

4. DISCUSSION

Infection and illness data from a human feeding
trial in Chicago(8,21,22) have been used to develop dif-
ferent types of dose-response models for Salmonella.
Teunis et al.(10) used data for Meleagridis III to
model probability of illness as a function of infection
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Fig. 11. Dose-response curve for salmonellosis that was obtained
by simulating scenario D in Table III, which was for eight strains
of Salmonella with different virulence.
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using a beta-Poisson dose-response model. Coleman
and Marks(13) modeled combined illness data for 9 of
13 strains using logistic and Gompertz dose-response
models. Latimer et al.(24) categorized selected strains
into low (Anatum II and Meleagridis I) and mod-
erate (Anatum I, Bareilly, and Newport) virulence
groups and developed a composite model for predict-
ing probability of illness as a function of group preva-
lence. In the current study, a dose-response model for
predicting salmonellosis as a function of dose con-
sumed for all 13 strains of Salmonella in the Chicago
feeding trial was developed. The current model differs
from previous models in that it can predict dose re-
sponse as a function of the prevalence of all 13 strains
in the original study.

Dose-response experiments, whether conducted
with animals or humans, are expensive and time con-
suming. Consequently, it is difficult to obtain suffi-
cient data to properly define dose-response curves
for even one dose-response condition. In fact, most
dose-response experiments have insufficient numbers
of dose groups and insufficient numbers of subjects
per dose group to accurately define complete dose-
response curves. An important characteristic of the
three-phase linear model, which was used in the cur-
rent study, was the ability to fit incomplete dose-
response curves. In fact, the three-phase linear model
was able to model dose response even when data
were missing at low, intermediate, and/or high dose
responses. The ability of the three-phase linear model
to fit incomplete dose-response data can lower the
cost of future feeding trials by reducing the number
of dose groups needed to estimate the dose-response
relationship.

When an attempt was made to fit the incom-
plete dose-response data to the more commonly
used exponential and beta-Poisson dose-response
models, the curve-fitting routine, which used a
Levenberg-Marquardt method of iteration, failed to
converge. However, other modelers have successfully
fit exponential and beta-Poisson models to similar
dose-response data by using a maximum likelihood
method.(11,12) Thus, the method of curve fitting may
explain the lack of fit in the present study. Nonethe-
less, it should be mentioned that like the exponen-
tial and beta-Poisson models, the three-phase linear
model is capable of fitting dose-response curves with
a minimum illness dose of one. However, this would
require data at low doses, as the three-phase linear
model does not automatically assume a minimum ill-
ness dose of one.

In agreement with Coleman and Marks(13) and
Latimer et al.,(24) variation in virulence among the
13 strains of Salmonella was observed. In the cur-
rent study, the minimum illness dose ranged from
104.8 for Bareilly to 109.3 for Pullorum I. High min-
imum illness doses in this study reflect the highly re-
sistant host population (healthy men) as well as strains
with low virulence, such as Pullorum, which is highly
pathogenic in chickens but only weakly pathogenic
in humans.(3) To model variation in virulence as well
as prevalence of the strains, a simulation approach
was used in the present study. To verify this approach,
the ability of the dose-response model to simulate
the original feeding trial was tested and the predicted
cases of salmonellosis were in close agreement with
those observed in the original trial. Thus, the dose-
response approach was verified.

Although the model was verified for predicting
dose response for the Chicago trial, which was con-
ducted in the late 1940s, the use of the model to predict
dose response in the current marketplace is not rec-
ommended for the following reasons. First, of the 13
strains of Salmonella tested only Newport is listed in
the top 15 serotypes isolated from human clinical sam-
ples in the United States between 1987 and 1997.(25)

Second, selection of only healthy men in the Chicago
trial and repeat feeding of some subjects, which was
shown to increase resistance to salmonellosis,(26) re-
sulted in a host population with high resistance to
salmonellosis and may account for the high illness
doses observed among the 13 strains of Salmonella.
Thus, the model predictions are only applicable to the
very resistant portion of the consumer population and
would grossly underpredict the public health risk of
salmonellosis if the model were applied to the general
consumer population, which contains many individu-
als with considerably lower resistance to Salmonella
due to such factors as young or old age, chemother-
apy, AIDS, malnutrition, and pregnancy, all of which
compromise the immune system and result in low re-
sistance to infectious disease, such as salmonellosis.

Clearly, there is a need for more feeding tri-
als with foods, strains of Salmonella, and consumers
that are more typical of those found in the current
marketplace. A key to being able to conduct such
studies in an ethical manner is to greatly lower the risk
of adverse health effects among volunteers. This could
be accomplished by feeding low doses of Salmonella,
by using infection rather than illness as the re-
sponse endpoint, and by using the three-phase linear
model to minimize the number of subjects needed to



Dose-Response Model for Salmonella 49

estimate the dose-response curve. Although infection
is a less desirable endpoint than illness, having infec-
tion as the dose-response endpoint may increase the
feasibility of conducting human feeding trials, may in-
crease the feasibility of including high-risk individuals
in the dose groups, and would result in more conser-
vative dose-response models than illness-based dose-
response models.

In feeding trials where one combination of food,
pathogen, and host factors is investigated, the dose-
response curve follows a sigmoid pattern that can
be fit to a number of dose-response models.(17) In
contrast, in the current study, when a model capa-
ble of generating dose-response curves as a func-
tion of strain virulence and prevalence was simulated,
the dose-response curves obtained were irregular in
shape. Similarly, Latimer et al.(24) found that the pre-
dicted dose-response curves for Salmonella are irreg-
ular in shape when strain virulence and prevalence
are included in the model. By analogy, inclusion of
multiple food and host factors in the feeding trial and
model may also add further irregularity to the shape
of the dose-response curve. Thus, an approach such
as that used in the current study may be needed to
develop models that are capable of predicting dose
response as a function of a matrix of food, pathogen,
and host factors.
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